

Euler's Method & Logistic Growth Functions Solutions

I. Euler's Method - Multiple Choice

1.

Original x	Original y	$\Delta x = dx$	$\Delta y \approx dy = (x+y) * dx$	New $x =$	New y =
				Original $x+dx$	Original $y + dy$
1	2	0.5	(1+2)*(0.5)=1.5	1.5	3.5
1.5	3.5	0.5	(1.5+3.5)*(0.5)=2.5	2.0	6.0

 \mathbf{C}

2.

Original x	Original y	$\Delta x = dx$	$\Delta y \approx dy = (2x + y) * dx$	New $x =$	New y =
				Original $x+ dx$	Original $y + dy$
1	-3	0.5	(2*1+(-3))*(0.5)=-0.5	1.5	-3.5
1.5	-3.5	0.5	(2*1.5+(-3.5))*(0.5)=-0.25	2.0	-3.75

D

II. Euler's Method - Free Response

1.

(b)
$$f(1.5) \approx f(1) + f'(1)(0.5)$$

= $4 - 3(1)(4)(0.5) = -2$
 $f(2) \approx -2 + f'(1.5)(0.5)$
 $\approx -2 - 3(1.5)(-2)(0.5) = 2.5$
2 : $\begin{cases} 1 : \text{Euler's method equations or} \\ \text{equivalent table} \\ 1 : \text{Euler approximation to } f(2) \\ \text{(not eligible without first point} \end{cases}$

2.

 $k = -\frac{1}{3}$

(c)
$$f\left(\frac{1}{2}\right) \approx f(0) + f'(0) \cdot \frac{1}{2} = -2 + (-3) \cdot \frac{1}{2} = -\frac{7}{2}$$

 $f'\left(\frac{1}{2}\right) \approx 3\left(\frac{1}{2}\right) + 2\left(-\frac{7}{2}\right) + 1 = -\frac{9}{2}$
 $f(1) \approx f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right) \cdot \frac{1}{2} = -\frac{7}{2} + \left(-\frac{9}{2}\right) \cdot \frac{1}{2} = -\frac{23}{4}$
(d) $g'(0) = 3 \cdot 0 + 2 \cdot k + 1 = 2k + 1$
 $g(1) \approx g(0) + g'(0) \cdot 1 = k + (2k + 1) = 3k + 1 = 0$

$$2 : \begin{cases} 1 : \text{Euler's method with 2 steps} \\ 1 : \text{Euler's approximation for } f(1) \end{cases}$$

$$2 : \begin{cases} 1 : \text{Euler's method with 2 steps} \\ 1 : \text{Euler's method with 2 steps} \end{cases}$$

Euler's Method & Logistic Growth Functions Solutions

III. Logistic Functions - Multiple Choice

$$\frac{dM}{dt} = 0.6M \left(1 - \frac{M}{200} \right)$$
or
$$\frac{dM}{dt} = \frac{0.6}{200} M (200 - M)$$

$$\Rightarrow M = 200$$

$$\Rightarrow B$$

$$M = 200$$

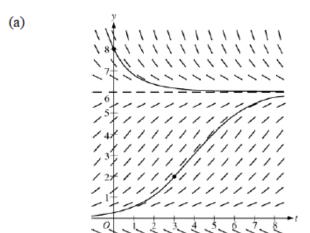
$$\frac{dP}{dt} = kP(200 - P) = 200kP - kP^{2}$$

$$\Rightarrow k = 0.001$$

$$\Rightarrow A$$

IV. Logistic Functions – Free Response

1.



 $2: \left\{ \begin{array}{l} 1\text{: solution curve through } (0,8) \\ 1\text{: solution curve through } (3,2) \end{array} \right.$

Euler's Method & Logistic Growth Functions Solutions

2.

 (a) For this logistic differential equation, the carrying capacity is 12.

If
$$P(0) = 3$$
, $\lim_{t \to \infty} P(t) = 12$.
If $P(0) = 20$, $\lim_{t \to \infty} P(t) = 12$.

(b) The population is growing the fastest when P is half the carrying capacity. Therefore, P is growing the fastest when P = 6.

 $2:\begin{cases} 1: answer \\ 1: answer \end{cases}$

1: answer