
Warm Up:

1. A postcard is 6 in. by 4 in. A printing shop will enlarge it so that the longer side is any length up to 3 ft. Find the dimensions of the biggest enlargement. 2 Are the triangles similar? If so, write a similarity statement and name the postulate or theorem you used. If not, explain.

3. Error Analysis Which solution for the value of x in the figure at the right is not correct? Explain.

$$\frac{4}{8} = \frac{8}{x}$$

$$4x = 72$$

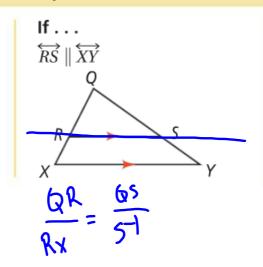
$$x = 18$$

$$\frac{8}{x} = \frac{4}{6}$$

$$48 = 4x$$

$$12 = x$$

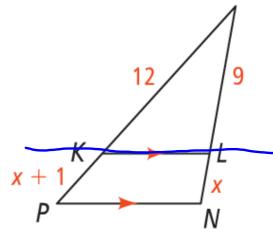
Learning Goal: Today I will learn about proportions in triangles.


Success Criteria: I am able to apply the side splitter and triangle angle bisector theorems to create proportions and solve.

7.5 Proportions in Triangles

*Theorem 7-4 Side-Splitter Theorem

Theorem

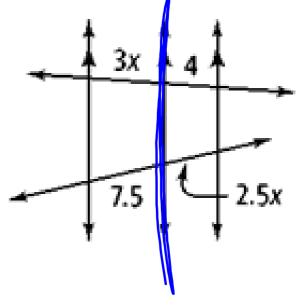

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides those sides proportionally.

Then . . . $\frac{XR}{RQ} = \frac{YS}{SQ}$

Use the side splitter theorem to solve for x.

$$\begin{array}{c|c}
 & 9 \\
 & \times \\$$

Use the side splitter theorem to solve for x.


$$\frac{4}{3x} \times \frac{2.5x}{7.5}$$

$$\frac{4(7.5)}{30} = 2.5x(3x)$$

$$\frac{30}{7.5} = \frac{7.5}{7.5}$$

$$\frac{7}{7.5} = \frac{7.5}{7.5}$$

$$\frac{7}{7.5} = \frac{7.5}{7.5}$$

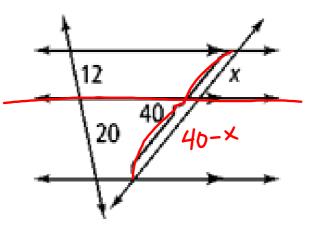
Use the side splitter theorem to solve for x.

$$\frac{12}{20} = \frac{X}{40-X}$$

$$12(40-X) = 20X$$

$$480-12X=20X$$

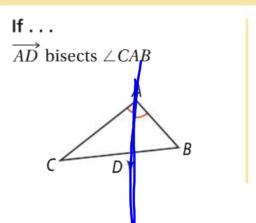
$$+12X + 12X$$


$$480=32X$$

$$480=32X$$

$$480=32X$$

$$480=32$$


$$480=32$$

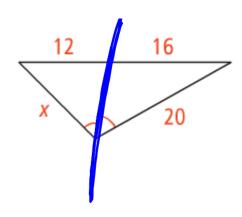
*Theorem 7-5 Triangle-Angle-Bisector Theorem

Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into two segments that are proportional to the other two sides of the triangle.

Then . . . $\frac{CD}{DB} = \frac{CA}{BA}$

Solve for x.

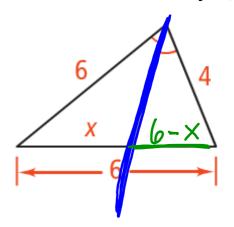

$$\frac{12}{16} = \frac{x}{20}$$

$$12(20) = 16x$$

$$\frac{240 = 16x}{16}$$

$$16$$

$$(x=15)$$


Solve for x.

$$\frac{6}{4} = \frac{x}{(6-x)} = \frac{x}{4x}$$

$$\frac{36-6x}{46x} = \frac{4x}{10}$$

$$\frac{36-6x}{10} = \frac{4x}{10}$$

$$\frac{36-6x}{10} = \frac{10}{10}$$

Closure: Today I learned about the proportions that exist in triangles.

I can set up proportions using the side splitter and triangle angle bisector theorems.

Today's Work:

Copy notes from classmate if absent.

OR

Complete PSAT#2

OR

Start HW#4

PSAT Prep:

PSAT1