Warm Up:

Algebra The volume of a cylinder is 600π cm³. The radius of a base of the cylinder is 5 cm. What is the height of the cylinder?

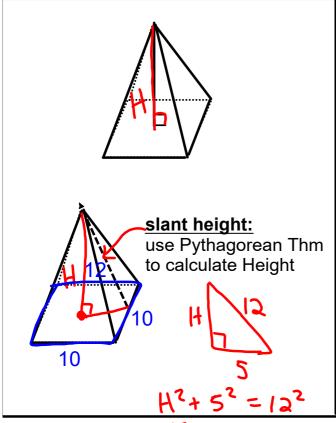
Landscaping To landscape her 70 ft-by-60 ft rectangular backyard, your aunt is planning first to put down a 4-in. layer of topsoil. She can buy bags of topsoil at \$2.50 per 3-ft³ bag, with free delivery. Or, she can buy bulk topsoil for \$22.00/yd³, plus a \$20 delivery fee. Which option is less expensive? Explain.

$$1 \text{ yd}^3 = 27 \text{ ft}^3$$

Learning Goal: Today I will learnhow to find the volume of a pyramid and cone.

Success Criteria: I am able to find the area of the base in order to calculate volume.

11-5 Volume of Pyramids and Cones


3 - Volume of Pyramids and Cones (BI).notebook	May 03,	2018
Given a cone with the same base area and height as a cylinde what fraction is the cone's volume?	∍r,	
Given a pyramid with the same base area and height as a priswhat fraction is the pyramid's volume?	m,	

Burrito Books

_			r	\frown	1	4
12	n	Δ	\cap t	Col	nta	nte
10	U		OI.	\mathbf{C}		HILO

Volume of a Pyramid...... 16-17

Volume of a Cone.......... 18-19

Volume of a Pyramid

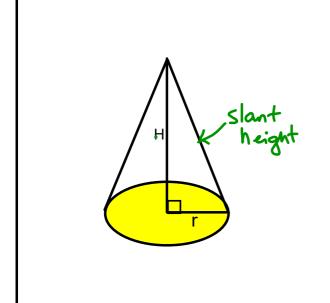
- one base of any shape polygon
- triangular sides that meet in common vertex

Volume

$$V = \frac{1}{3} B H$$

B= area of base

H = height of pyramid


(inside, perpendicular to base)

$$V = \frac{1}{3}bhH$$

$$V = \frac{1}{3} \cdot 10 \cdot 10 \cdot 10 \cdot 9$$

$$V = \frac{1}{3} \cdot 10 \cdot 10 \cdot 10 \cdot 9$$

$$H^{2} + 23 = 144$$
 $-25 - 25$
 $H^{2} = \sqrt{19}$
 $H = 10.9$

Volume of a Cone

• circle base (one) and a vertex not in the same plane

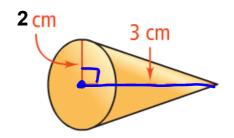
<u>Volume</u>

$$V = \frac{1}{3}\pi r^2 H$$

H = height of cone
(inside, perpendicular to base)

r = radius of base

Find the volume.

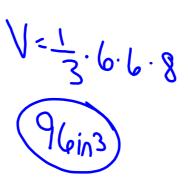

Basic Formula: $V = \frac{1}{3}BH$

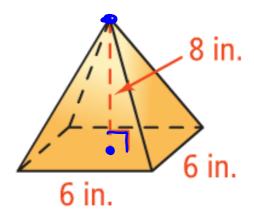
Specific Formula:

$$V = \frac{3}{1}\pi c_3 H$$

Numbers Substituted:

$$V = \frac{1}{3}(3.14).2^{\frac{3}{2}}.3$$
 $V = 12.56cm^{\frac{3}{2}}$

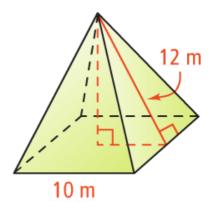


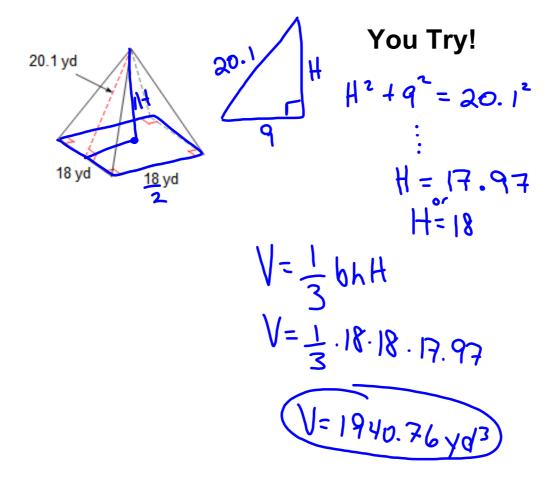

Find the volume.

Basic Formula:

Specific Formula: $V = \frac{1}{3}bhH$

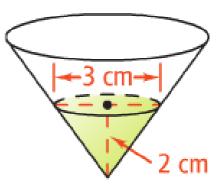
Numbers Substituted:

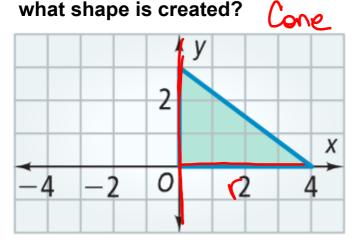



Find the volume.

Basic Formula:

Specific Formula:

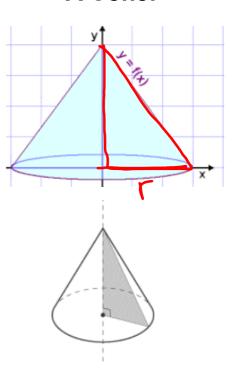

Numbers Substituted:



Your Turn!

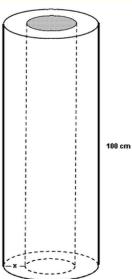
Chemistry This cone has a filter that was being used to remove impurities from a solution but became clogged and stopped draining. The remaining solution is represented by the shaded region. How many cubic centimeters of the solution remain in the cone?

If you rotate a triangle about the y axis, what shape is created?



Find the volume:

$$V = \frac{1}{3} \pi (^{2} H)$$


$$V = \frac{1}{3} (3.14)(4)^{2} 3$$

A Cone!

3 - Volume of Pyramids and Cones (BI).notebook	May 03, 2018
Think About a Plan A cone with radius 1 fits snugly inside a square which fits snugly inside a cube. What are the volumes of the three fi	

Find the thickness x of the hollow cylinder of height 100 cm if the volume between the inner and outer cylinders is equal to 1100π cm³ and the outer diameter is 12 cm.

Closure: Today I learned how to use the base area and height to calculate volume.